future 1.3.0 is available on CRAN. With futures, it is easy to write R code once, which the user can choose to evaluate in parallel using whatever resources s/he has available, e.g. a local machine, a set of local machines, a set of remote machines, a high-end compute cluster (via future.BatchJobs and soon also future.batchtools), or in the cloud (e.g. via googleComputeEngineR).
Futures makes it easy to harness any resources at hand.
A new version of the future.BatchJobs package has been released and is available on CRAN. With a single change of settings, it allows you to switch from running an analysis sequentially on a local machine to running it in parallel on a compute cluster.
Our different futures can easily be resolved on high-performance compute clusters.
Requirements The future.BatchJobs package implements the Future API, as defined by the future package, on top of the API provided by the BatchJobs package.
A new version of the future package has been released and is available on CRAN. With futures, it is easy to write R code once, which later the user can choose to parallelize using whatever resources s/he has available, e.g. a local machine, a set of local notebooks, a set of remote machines, or a high-end compute cluster.
The future provides comfortable and friendly long-distance interactions.
The new version, future 1.
Unless you count DSC 2003 in Vienna, last week’s useR conference at Stanford was my very first time at useR. It was a great event, it was awesome to meet our lovely and vibrant R community in real life, which we otherwise only get know from online interactions, and of course it was very nice to meet old friends and make new ones.
The future is promising.
At the end of the second day, I presented A Future for R (18 min talk; slides below) on how you can use the future package for asynchronous (parallel and distributed) processing using a single unified API regardless of what backend you have available, e.