There are new versions of future and future.apply - your friends in the parallelization business - on CRAN. These updates are mostly maintenance updates with bug fixes, some improvements, and preparations for upcoming changes. It’s been some time since I blogged about these packages, so here is the summary of the main updates this far since early 2020: future: values() for lists and other containers was renamed to value() to simplify the API [future 1.

Continue reading

Source: Wiktionary.org I presented Progressr: An Inclusive, Unifying API for Progress Updates (15 minutes; 20 slides) at e-Rum 2020, on June 17, 2020: Abstract HTML (incremental Google Slides; requires online access) PDF (flat slides) Video (starts at 00h49m58s) I am grateful for everyone involved who made e-Rum 2020 possible. I cannot imagine having to cancel the on-site Milano conference that had planned for more than a year and then start over to re-organize and create a fabulous online experience for ~1,500 participants in such short notice.

Continue reading

Design: Dan LaBar I presented Future: Simple Async, Parallel & Distributed Processing in R Why and What’s New? at rstudio::conf 2020 in San Francisco, USA, on January 29, 2020. Below are the slides for my talk (17 slides; ~18+2 minutes): HTML (incremental Google Slides; requires online access) PDF (flat slides) Video with closed captions (official rstudio::conf recording) First of all, a big thank you goes out to Dan LaBar (@embiggenData) for proposing and contributing the original design of the future hex sticker.

Continue reading

No dogs were harmed while making this release future 1.15.0 is now on CRAN, accompanied by a recent, related update of future.callr 0.5.0. The main update is a change to the Future API: resolved() will now also launch lazy futures Although this change does not look much to the world, I’d like to think of this as part of a young person slowly finding themselves. This change in behavior helps us in cases where we create lazy futures upfront;

Continue reading

Below are the slides for my Future: Simple Parallel and Distributed Processing in R that I presented at the useR! 2019 conference in Toulouse, France on July 9-12, 2019. My talk (25 slides; ~15+3 minutes): Title: Future: Simple Parallel and Distributed Processing in R HTML (incremental Google Slides; requires online access) PDF (flat slides) Video (official recording) I want to send out a big thank you to everyone making the useR!

Continue reading

A bit late but here are my slides on Future: Friendly Parallel Processing in R for Everyone that I presented at the satRday LA 2019 conference in Los Angeles, CA, USA on April 6, 2019. My talk (33 slides; ~45 minutes): Title: : Friendly Parallel and Distributed Processing in R for Everyone HTML (incremental slides; requires online access) PDF (flat slides) Video (44 min; YouTube; sorry, different page numbers) Thank you all for making this a stellar satRday event.

Continue reading

Below are links to my slides from my talk on Future: Friendly Parallel Processing in R for Everyone that I presented last month at the satRday Paris 2019 conference in Paris, France (February 23, 2019). My talk (32 slides; ~40 minutes): Title: Future: Friendly Parallel Processing in R for Everyone HTML (incremental slides; requires online access) PDF (flat slides) A big shout out to the organizers, all the volunteers, and everyone else for making it a great satRday.

Continue reading

A commonly asked question in the R community is: How can I parallelize the following for-loop? The answer almost always involves rewriting the for (...) { ... } loop into something that looks like a y <- lapply(...) call. If you can achieve that, you can parallelize it via for instance y <- future.apply::future_lapply(...) or y <- foreach::foreach() %dopar% { ... }. For some for-loops it is straightforward to rewrite the code to make use of lapply() instead, whereas in other cases it can be a bit more complicated, especially if the for-loop updates multiple variables in each iteration.

Continue reading

New versions of the following future backends are available on CRAN: future.callr - parallelization via callr, i.e. on the local machine future.batchtools - parallelization via batchtools, i.e. on a compute cluster with job schedulers (SLURM, SGE, Torque/PBS, etc.) but also on the local machine future.BatchJobs - (maintained for legacy reasons) parallelization via BatchJobs, which is the predecessor of batchtools These releases fix a few small bugs and inconsistencies that were identified with help of the future.

Continue reading

future 1.9.0 - Unified Parallel and Distributed Processing in R for Everyone - is on CRAN. This is a milestone release: Standard output is now relayed from futures back to the master R session - regardless of where the futures are processed! Disclaimer: A future’s output is relayed only after it is resolved and when its value is retrieved by the master R process. In other words, the output is not streamed back in a “live” fashion as it is produced.

Continue reading

Got compute? future.apply 1.0.0 - Apply Function to Elements in Parallel using Futures - is on CRAN. With this milestone release, all* base R apply functions now have corresponding futurized implementations. This makes it easier than ever before to parallelize your existing apply(), lapply(), mapply(), … code - just prepend future_ to an apply call that takes a long time to complete. That’s it! The default is sequential processing but by using plan(multisession) it’ll run in parallel.

Continue reading

As promised - though a bit delayed - below are links to my slides and the video of my talk on Future: Parallel & Distributed Processing in R for Everyone that I presented last month at the eRum 2018 conference in Budapest, Hungary (May 14-16, 2018). The conference was very well organized (thank you everyone involved) with a great lineup of several brilliant workshop sessions, talks, and poster presentations (thanks all).

Continue reading

future 1.8.0 is available on CRAN. This release lays the foundation for being able to capture outputs from futures, perform automated timing and memory benchmarking (profiling) on futures, and more. These features are not yet available out of the box, but thanks to this release we will be able to make some headway on many of the feature requests related to this - hopefully already by the next release.

Continue reading

The Many-Faced Future

The future package defines the Future API, which is a unified, generic, friendly API for parallel processing. The Future API follows the principle of write code once and run anywhere - the developer chooses what to parallelize and the user how and where. The nature of a future is such that it lends itself to be used with several of the existing map-reduce frameworks already available in R. In this post, I’ll give an example of how to apply a function over a set of elements concurrently using plain sequential R, the parallel package, the future package alone, as well as future in combination of the foreach, the plyr, and the purrr packages.

Continue reading

doFuture 0.4.0 is available on CRAN. The doFuture package provides a universal foreach adaptor enabling any future backend to be used with the foreach() %dopar% { ... } construct. As shown below, this will allow foreach() to parallelize on not only multiple cores, multiple background R sessions, and ad-hoc clusters, but also cloud-based clusters and high performance compute (HPC) environments. 1,300+ R packages on CRAN and Bioconductor depend, directly or indirectly, on foreach for their parallel processing.

Continue reading

future 1.3.0 is available on CRAN. With futures, it is easy to write R code once, which the user can choose to evaluate in parallel using whatever resources s/he has available, e.g. a local machine, a set of local machines, a set of remote machines, a high-end compute cluster (via future.BatchJobs and soon also future.batchtools), or in the cloud (e.g. via googleComputeEngineR). Futures makes it easy to harness any resources at hand.

Continue reading

A new version of the future.BatchJobs package has been released and is available on CRAN. With a single change of settings, it allows you to switch from running an analysis sequentially on a local machine to running it in parallel on a compute cluster. Our different futures can easily be resolved on high-performance compute clusters. Requirements The future.BatchJobs package implements the Future API, as defined by the future package, on top of the API provided by the BatchJobs package.

Continue reading

A new version of the future package has been released and is available on CRAN. With futures, it is easy to write R code once, which later the user can choose to parallelize using whatever resources s/he has available, e.g. a local machine, a set of local notebooks, a set of remote machines, or a high-end compute cluster. The future provides comfortable and friendly long-distance interactions. The new version, future 1.

Continue reading

Unless you count DSC 2003 in Vienna, last week’s useR conference at Stanford was my very first time at useR. It was a great event, it was awesome to meet our lovely and vibrant R community in real life, which we otherwise only get know from online interactions, and of course it was very nice to meet old friends and make new ones. The future is promising. At the end of the second day, I presented A Future for R (18 min talk; slides below) on how you can use the future package for asynchronous (parallel and distributed) processing using a single unified API regardless of what backend you have available, e.

Continue reading

Author's picture

Henrik Bengtsson

MSc CS | PhD Math Stat | Associate Professor | R Foundation | R Consortium

Associate Professor