parallelly 1.31.1 is on CRAN. The parallelly package enhances the parallel package - our built-in R package for parallel processing - by improving on existing features and by adding new ones. Somewhat simplified, parallelly provides the things that you would otherwise expect to find in the parallel package. The future package relies on the parallelly package internally for local and remote parallelization.
Since my previous post on parallelly in November 2021, I’ve fixed a few bugs and added some new features to the package;
This is a guest post by Chris Paciorek, Department of Statistics, University of California at Berkeley.
In this post, I’ll demonstrate that you can easily use the future package in R on a cluster of machines running in the cloud, specifically on a Kubernetes cluster.
This allows you to easily doing parallel computing in R in the cloud. One advantage of doing this in the cloud is the ability to easily scale the number and type of (virtual) machines across which you run your parallel computation.